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We investigate the intrinsic spin Hall effect in two-dimensional electron gases in quantum wells with two
subbands, where a new intersubband-induced spin-orbit coupling is operative. The bulk spin Hall conductivity
�xy

z is calculated in the ballistic limit within the standard Kubo formalism in the presence of a magnetic field
B and is found to remain finite in the B=0 limit, as long as only the lowest subband is occupied. Our calculated
�xy

z exhibits a nonmonotonic behavior and can change its sign as the Fermi energy �the carrier areal density
n2D� is varied between the subband edges. We determine the magnitude of �xy

z for realistic InSb quantum wells
by performing a self-consistent calculation of the intersubband-induced spin-orbit coupling.
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I. INTRODUCTION

The spin Hall effect �SHE� �Ref. 1� refers to the spin
accumulation with opposite polarizations at the two edges of
a Hall bar due to the transverse spin current induced by a
driving longitudinal charge current. This effect was first
theoretically proposed2 as arising from the spin-dependent
scattering at impurities with spin-orbit �SO� interaction. In
the literature this is commonly referred to as the “extrinsic
SHE” as it relies on the presence of impurities �“extrinsic
mechanism”�. In this case, the asymmetric Mott-skew and
side-jump scattering contributions drive spin-up and spin-
down electrons toward opposite directions, thus giving rise
to a net transverse spin current �with no charge current� and
to spin accumulation at the edges. Recently, two theoretical
works3,4 predicted that the spin-orbit effects on the band
structure of semiconductors—the so called “intrinsic mecha-
nism” for the SHE—can also give rise to a spin current per-
pendicular to an applied electric field, even in the absence of
impurities. These authors have calculated the ballistic spin
Hall conductivity �SHC� �xy

z , defined via Jx
z =�jx

z /2=��vx�z
+�zvx� /4=�xy

z Ey, where vx is the x component of the veloc-
ity operator and �x,y,z are the Pauli matrices, for a p-doped
three-dimensional �bulk� valence-band system3 and for a
two-dimensional electron gas �2DEG� with the Rashba spin-
orbit interaction.4

A number of theoretical papers have investigated the ro-
bustness of the ballistic SHC �xy

z as arising from the intrinsic
mechanism, against scattering by nonmagnetic5–11 and
magnetic12 impurities, its dependence on specific classes of
SO interactions,10 and the interplay between the SO coupling
and magnetic fields.11,13,14 Two early experimental efforts15,16

have probed the spin Hall effect for electrons and holes.17

Kato et al.15 find that the SHE in n-GaAs epilayers is due to
the extrinsic mechanism �nonmagnetic impurities� while
Wunderlich et al.16 conclude that the SHE in the 2D hole gas
probed in their experiment is intrinsic. Further investigations
have also shown that the SHE in 2DEGs is of the extrinsic
type.18

Following an early debate concerning the robustness of
the intrinsic SHE, it is now well established that the dc SHC

as defined above vanishes identically for model Hamilto-
nians with a linear-in-the-carrier-momentum SO interaction,
such as that of Rashba13 and/or the linearized Dresselhaus.
This holds in both the ballistic case �“clean limit”� and in the
limit of weak scattering by nonmagnetic impurities.5–11,19

This result can be understood by examining the relationship
between the time derivative of the spin density and spin cur-
rent in these systems. As pointed out in Refs. 8, 9, and 20,
for Rashba-type models d�k /dt� jk

z, k=x ,y and should van-
ish in the dc steady-state regime �in the presence of some
relaxation mechanism� where d�k /dt=0.21

The search for new materials that can exhibit the SHE as
well as other types of SO interactions has continued over the
years.22 Recently, we have introduced a type of SO interac-
tion present in III-V �or II-VI� zinc-blende semiconductor
quantum wells with more than one subband.23,24 This
intersubband-induced SO term is similar in form to the
Rashba SO interaction. However, it couples electron states
from distinct subbands and hence can be nonzero even in
structurally symmetric wells. For an electron in a symmetric
quantum well with two subbands we have23,24

H = � p2

2m
+ E�1 � 1 −

�E
2

�z � 1 +
�

�
�x � �px�y − py�x� ,

�1�

where m is the effective mass, E= �Ee+Eo� /2 and �E=Eo
−Ee, with Ee and Eo denoting the band edges of the lowest
�even� and first excited �odd� subbands. �x,y,z and �x,y,z are
Pauli matrices describing the subband degree of freedom and
the electron spin, respectively. The intersubband-induced SO
coupling � depends on the structural potential of the well,
the electronic Hartree potential, and the external gate
potential.24

In this paper we calculate the dc spin Hall conductivity
�xy

z for 2D electrons in the presence of the intersubband-
induced SO interaction in wells with two subbands. We use
the Kubo formula in the ballistic limit. We follow Rashba’s
approach13 by performing our calculation in the presence of
a perpendicular magnetic field B, which modifies the energy
spectrum �Landau levels� thus allowing us to consistently
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include intrabranch and interbranch transitions in the Kubo
formula, and then taking the B→0 limit. With this proce-
dure, known to produce the correct vanishing of �xy

z for the
Rashba model,13 we derive an analytical expression for the
dc SHC in two subband systems. More specifically, we find
that: �i� �xy

z is nonzero for electrons whose Fermi energy EF
lies between the subband edges Ee and Eo, i.e., when only the
lowest subband is occupied, and �ii� �xy

z is null for EF�Eo,
i.e., when two subbands are occupied. Interestingly, the non-
zero SHC is nonuniversal �e.g., it depends on ��, exhibits a
nonmonotonic behavior and a sign change for Ee�EF�Eo.
In addition, the SHC presents finite jumps at the subband
edges when plotted as a function of EF �or the carrier areal
density n2D� due to discontinuities in the density of states
�DOS� contributing to the spin density. We have also per-
formed a detailed self-consistent calculation of the energy
spectrum and wave functions for realistic wells, from which
we determine � and the corresponding �xy

z . The magnitude of
our self-consistently determined SHC is, however, much
smaller than �0=e /4	.25

Before describing in detail our linear-response calculation
for the SHC, here we present a simple argument as to why
we could expect a nonvanishing SHC for electrons in 2DEGs
with two subbands where the intersubband SO interaction is
operative. Despite the formal similarity between the SO term
in our Hamiltonian, Eq. �1� and that of Rashba, here we find
a different relationship between the spin current and spin
density, i.e.,

jx
z =

�2

2m�
� d

dt
��x � �x� −

�E
�

�y � �x� , �2�

in contrast to the Rashba model for which d�x /dt� jx
z. In Eq.

�2� the spin current is related to the subband-related spin
densities �x � �x and �y � �x. The second term in Eq. �2�,
absent in the Rashba system, suggests that the �pseudo� spin-
density response to an applied electric field can contribute to
the spin current—even in the dc steady-state limit where
d��x � �x� /dt=0. Hence, 2DEGs formed in two subband
wells with intersubband SO coupling may have a nonzero
SHC. Our detailed linear-response calculation below shows
that this is indeed the case in the clean limit.

II. MODEL HAMILTONIAN AND KUBO FORMULA

Let us consider our Hamiltonian �1� in the presence of a
magnetic field Bẑ=�
A by making the replacement p
→�=p− �e /c�A. For simplicity, we do not consider the Zee-
man splitting �i.e., we assume a zero g factor14�. Since our
SO term couples only electrons with opposite spins in differ-
ent subbands, the subband-spin Hilbert space ��bs	 ;b
=e ,o ,s= ↑ ,↓
 can be divided into two independent sub-
spaces F+= ��e↑	 , �o↓	
 and F−= ��o↑	 , �e↓	
, and the 2
2
Hamiltonian in each subspace �=� can be written as

H� =
�2

2m
+ E − � ��E/2 ��	y + i	x�/�

��	y − i	x�/� − ��E/2 � . �3�

The reduced Hamiltonian is identical to that of a 2DEG with
a Rashba SO coupling of strength � and an effective Zeeman

splitting ��E. Note that only the sign of the effective Zee-
man splitting differs between H� in two subspaces.

In the absence of the SO coupling ��=0�, the Schrödinger
equation gives rise to the Landau levels �bsn	0 with the level
index n
0 for each subband b and spin s. The Landau levels
are evenly spaced by the cyclotron gap ��c= �eB� /mc. The
degeneracy �per unit volume� of each level and the magnetic
length are, respectively, 1 /2	l2 and l=�c� /eB. For nonzero
SO coupling ���0� the coupling of Landau levels within the
same subspace produces the mixed Landau levels ���n	,

��� + n	
�� − n	 � = � sin

��n

2
− i cos

��n

2

cos
��n

2
− i sin

��n

2

� �b1↑n	0

�b2↓n − 1	0
� , �4�

where �b1 ,b2�= �e ,o� for �=+ and �o ,e� for �=−, with the
corresponding eigenenergies

E��n = E + ��c�n − ���n� . �5�

Here �=� denotes the spin branch. It is convenient to in-
troduce dimensionless parameters Eso=2m�2 /�3�c and Eg
=�E /��c for the SO coupling energy and the subband gap,
respectively. In term of these we can define sin ��n

=�nEso /��n and cos ��n=�� /��n with ��= �1−�Eg� /2 and

��n=�nEso+��
2. Note that the eigenstate for n=0 exists only

for �=−sgn ��.
We determine the dc spin Hall conductivity at zero tem-

perature by using the Kubo formula13

�xy
z = −

ie

2	l2�
�

�
�n��n�

� ���n�jx
z����n�	����n��vy���n	
����n − ����n��

2 , �6�

where the primed sum indicates that it should be performed
over the states with ���n=E��n /��EF /� and ����n�
�EF /�. Here we have used the fact that the operators jx

z and
vy couple only states in same subspace and the matrices
���n�jx

z����n�	 and ����n��vy���n	 are symmetric and anti-
symmetric, respectively. Since the matrix elements are inde-
pendent of the guiding center position, the factor 1 /2	l2

appears due to the Landau-level degeneracy.
A more insightful analysis of the SHC can be achieved by

expressing the operators in terms of commutators with the
Hamiltonian. First, the relation vy = �i /���H ,y� leads to

����n��vy���n	 = il2�����n� − ���n�����n��kx���n	 ,

�7�

with kx= �a†+a� /�2l. This is a direct consequence of the
definition of the ladder operator a= �l /�2���	x+ i	y�
= �y+ l2px /�+ il2py /�� /�2l. From Eq. �2�, on the other hand,
we can obtain

���n�jx
z����n�	 = −

��E
2m�

���n��y � �x����n�	

+
i�2

2m�
����n − ����n��


���n��x � �x����n�	 . �8�
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Substitution of Eqs. �7� and �8� into Eq. �6� gives rise to
�xy

z =��1�+��2�, with

��1�

�0
= �

�
�

�n��n�

� �2

im�
���n��x � �x����n�	����n��kx���n	 ,

�9a�

��2�

�0
= �

�
�

�n��n�

� ��E
m�

���n��y � �x����n�	����n��kx���n	
���n − ����n�

,

�9b�

with �0�e /4	.25 Each of the two terms can be further di-
vided into two contributions coming from two different tran-
sitions classified by the restriction on the spin branches of
states to be summed over: interbranch and intrabranch
transitions.13

As can be seen from Fig. 1, the interbranch contributions
describe transitions from the filled states in the lower branch
�=+ to the empty ones in the upper branch �=− and follow
the selection rule ��+n	→ ��−n�1	. The intrabranch transi-
tions are possible only in the vicinity of the Fermi level in
each spin branch and obey a similar selection rule ���n��	
→ ���n��+1	, where n�� is the index of the highest-filled
Landau level in the subspace � and spin branch �; see Fig. 1.
In what follows, we write ��i�=�inter

�i� +�intra
�i� with i=1,2 to

identify and separately investigate the contributions from the
interbranch and intrabranch transitions.

III. SPIN HALL CONDUCTIVITY

First we investigate ��1�. Making use of the fact that the
matrices ���n��x � �x����n�	 and ����n��kx���n	 are anti-
symmetric and symmetric, respectively, one can derive the
two following identities

�
n�n���

�

���n��x � �x����n�	����n��kx���n	 = 0,

�10a�

�
n���

���n��x � �x����n�	����n��kx���n	 = 0, �10b�

where the asterisk over the sum indicates that it should be
done over the states with En� ,En����EF. We have used the
commutation relation ��x � �x ,kx�=0 to prove the second
identity, which is valid for arbitrary �, �, and n. Applying
these identities to Eq. �9a� reveals that ��1� vanishes identi-
cally for arbitrary B and EF. Interestingly, the interbranch and
intrabranch contributions exactly cancel out, i.e., �inter

�1�

=−�intra
�1� . This cancellation is similar to that which occurs in

the Rashba model.13 Here, however, the extended operator
�x � �x replaces the spin operator �x in the Rashba case.
More explicitly, we have

�inter
�1�

�0
= −

�intra
�1�

�0
=

1

2�
� �

n�+

�n�+

−
n�− + 1

�n�−+1
, EF � Eo,

n�+

�n�+

, Ee � EF � Eo.�
�11�

In the B→0 limit, we obtain

�inter
�1�

�0
= −

�intra
�1�

�0
= �

�1�2 + 1/2
�1�2 + 1/4

, EF � Eo,

1 +
�2

�3 + �1/2
, Ee � EF � Eo

�
�12�

with �1=Eso /Eg, �2= �EF−E� /�E, and �3

=��1
2 /4+�1�2+1 /4. It is worth noting that �intra

�1� �or �inter
�1� �

varies continuously as EF passes through the upper subband
energy edge Eo, even though the intrabranch transitions com-
ing from the �=− spin branch �see Fig. 1�b�� stop contrib-
uting at this energy. This is so because the contribution
�n�−+1� /�n�−+1 in Eq. �11� vanishes as EF→Eo.

We now evaluate the second term ��2� of the spin Hall
conductivity, Eq. �9b�. In our model, ��2� arises solely from
the pseudospin density response �see Eq. �2��, which has no
counterpart in the Rashba model. Differently than ��1�, the
expression for ��2� contains a factor ���n−����n� in the de-
nominator �cf., Eqs. �9a� and �9b��; this prevents us from
deriving identities such as Eq. �10� for ��2�. Hence, no exact
cancellation between the interbranch and intrabranch contri-
butions is guaranteed for ��2�. In general, ��2� is nonzero for
arbitrary B. In addition, the denominator factor in ��2� allows
for the possibility of a finite contribution to ��2� even if the
matrix elements in the numerator of Eq. �9b� vanish, pro-
vided that ����n−����n�� goes to zero as well. This, in con-
trast to the ��1� case, makes the intrabranch contribution �intra

�2�

discontinuous as EF crosses the subband edges.
Explicitly, the interbranch and intrabranch contributions

to ��2� are

nλ+nλ−

µ = +

µ = − nλ+

µ = +

µ = −

(b)(a)

FIG. 1. �Color online� Diagrams describing the interbranch
�long arrows� and intrabranch �short arrows� transitions. �a� Left
and �b� right panels correspond to the cases EF�Eo and Ee�EF

�Eo, respectively. n� denotes the highest-filled Landau level in the
spin branch �.
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�inter
�2�

�0
= �

�

�

2
Eg �

n=max�n�−+1,0�

n�+−1
n + 1 + ��

��n+1
−

n − ��

��n

���n+1 + ��n�2 − 1
, �13a�

�intra
�2�

�0
= �

�

�

2
Eg�

2n�+ + 1 +
n�+ − ��

��n�+

1 − Eso + 2��n�+

−

2n�− + 1 +
n�− + 1 + ��

��n�−+1

1 + Eso + 2��n�−+1
,

EF � Eo,

2n�+ + 1 +
n�+ − ��

��n�+

1 − Eso + 2��n�+

,
Ee � EF � Eo.� �13b�

The intrabranch contribution from the �=− spin branch, i.e.,
the second term in Eq. �13b�, present only for EF�Eo, does
not vanish as EF→Eo and B→0. This leads to a discontinu-
ity in ��2� at EF=Eo. A similar discontinuity occurs at EF
=Ee due to the first term in Eq. �13b� not vanishing as EF
→Ee and B→0. In the B→0 limit, Eq. �13� simplifies to

�inter
�2�

�0
= �−

1

2�1�2 + 1/2
, EF � Eo,

1

�1
� 1

2�3 + �1
− 1� , Ee � EF � Eo,� �14a�

�intra
�2�

�0
= �

1

2�1�2 + 1/2
, EF � Eo,

1

2�3�2�3 + �1�
+

�2 + �1/2
4�3

3 , Ee � EF � Eo.�
�14b�

Interestingly, the above results show that the interbranch and
intrabranch contributions to ��2� exactly cancel out in the B

→0 limit, provided that EF�Eo, i.e., when both spin
branches are filled. Note that this cancellation only occurs in
the B→0 limit. Hence, since ��1� identically vanishes for any
EF and B, we find that in the B→0 limit �xy

z is nonvanishing
only for Ee�EF�Eo being given by

�xy
z = ��2� = �0� 1

�1
� 1

2�3
− 1� +

�2 + �1/2
4�3

3 � . �15�

In the above expressions, the Fermi energy EF �at B=0� is
given by

EF =�
	�2n2D

2m
+ E +

m�2

�2 , EF � Eo

	�2n2D

m�1 +
2m�2

�2�E�
+ Ee,

Ee � EF � Eo� �16�

as can be straightforwardly derived from the B=0 spectrum
of our system.26 Next we calculate �xy

z for realistic wells.

IV. SELF-CONSISTENT CALCULATION AND
RESULTS

We have performed a detailed self-consistent
calculation—by solving the Schrödinger and Poisson’s equa-
tions in the Hartree approximation—to determine the inter-
subband SO coupling strength � for realistic symmetric
wells24 and the corresponding spin Hall conductivity �xy

z ���.
We have considered a modulation-doped symmetric
Al0.3In0.7Sb / InSb /Al0.3In0.7Sb quantum well with only two
subbands;27 see Fig. 2. The structure comprises a single well
of width Lw=15 nm and two n-doped semi-infinite adjacent
regions. We assume that the ionized impurities giving up
electrons to the well form a continuum positive background
with density � of width w=5 nm �depletion layer�. Our self-
consistent calculation follows that of Ref. 24.

In an earlier work,24 we have found that narrow single
InSb wells give sizable values for the intersubband-induced
SO coupling strength �. Here we self-consistently calculate
the corresponding spin Hall conductivity as a function of the
areal density n2D.28 Figure 3 shows the calculated inter-

-100

0

100

200

300

400

500

-40 -30 -20 -10 0 10 20 30 40

V
sc

(m
eV

)

z (nm)

w

Lw

E0
E1

Vsc
EF

FIG. 2. �Color online� Self-consistent potential profile of our
InSb /Al0.3In0.7Sb quantum well with two subbands. The calculated
subband edges Ee=1.0 meV and Eo=187.3 meV and the corre-
sponding wave functions are also shown. The Fermi energy is EF

=100.3 meV.

LEE et al. PHYSICAL REVIEW B 80, 155314 �2009�

155314-4



branch ��inter=�inter
�1� +�inter

�2� � and intrabranch ��intra=�intra
�1�

+�intra
�2� � conductivity contributions and the total spin Hall

conductivity �xy
z �see Eq. �15�� as a function of the areal

density n2D �or EF� for a single InSb well. Note the two
discontinuities of the SHC at densities corresponding to EF
=Eo �see vertical dashed line� and EF=Ee �at n2D=0�. The
magnitude of these jumps are �� /�0=�1 / �1+�1�2 and
−�1 / �1−�1�2, respectively. These discontinuities come from
the intrabranch contribution �xy,intra

z =�intra
�2� while the inter-

branch contribution �xy,inter
z =�inter

�2� varies smoothly with EF
�recall that ��1�=0�. In addition, the competition between
�intra

�2� and �inter
�2� can lead to a sign change in �xy

z as EF is
varied, see Fig. 3. It should be noted that as the strength of
the SO coupling � �or �1� becomes smaller, �� and �xy

z

diminish as well, thus vanishing completely at �1=0. Despite
the interesting features displayed by the total spin Hall
conductivity—the sign change and the nonmonotonic
behavior—as the electron density is varied between the sub-
band edges, we find that the largest values of �xy

z are ex-
tremely small ��10−3�0�.

V. ADDITIONAL DISCUSSION

Considering the formal similarity between our Hamil-
tonian containing the intersubband-induced SO coupling and
Rashba’s, it is not entirely surprising that the SHC vanishes
when both spin branches are filled. Novel effects of the
intersubband-induced SO term arise when only the lower
branch is filled: an incomplete cancellation between the con-
tributions from the interbranch and intrabranch transitions
lead to a nonzero SHC and discontinuities in it. The origin of
these discontinuities can be traced back to the abrupt changes
in B=0 DOS of the model at the subband edges. The B=0
DOS for each spin branch is given by ��= 1

2�0�1��1 /2�3�
with �0=m /	�2. Hence the DOS abruptly changes at EF
=Eo from a constant value �++�−=�0 to �+, thus giving rise
to an abrupt loss of states contributing to the spin-density

response. In fact, the intrabranch contribution, that is, re-
sponsible for the discontinuity is proportional to the DOS,
that is, 1 / ����n��

−���n��+1���� �see Eq. �9b��. The discon-
tinuity �� in �xy

z can be explicitly related to the discontinuity
�� in the DOS as follows:

��

�0
= �2

��

�0
�1 − 2

��

�0
� , EF = Eo

− 2
��

�0
�1 + 2

��

�0
� , EF = Ee.� �17�

Note that both expressions vanish as �� /�0→0, clearly
showing that �� arises from the discontinuity in the DOS.

Our intersubband-induced SO coupling mixes both the
spin and the subband degrees of freedom simultaneously.
Therefore it does not provide a mechanism to couple oppo-
site spins within a given subband. This implies that any pro-
jection of our Hamiltonian into the lower subband, in the
limit of large subband gap �E�Eso, would not produce an
effective SO coupling between spins within the lower sub-
band so that no finite SHC appears. This limiting case study
stresses that our finite SHC, even for Fermi energies near the
lower subband bottom, is due to the subband-transfer pro-
cess, even though it should be quite small in the limit �E
�Eso. We expect, however, that additional subband mixing
but spin-preserving scattering mechanisms, such as impurity
scattering, can induce an effective SO coupling within a
given subband when mediated by the intersubband-induced
SO coupling, which mixes both spins and subbands. This
impurity-mediated SO coupling may then affect and possibly
even enhance the strength of the SHC, as long as its momen-
tum randomization is weak enough.

As a final point we mention that interbranch contribution
�xy,inter

z reproduces the result for the SHC calculated via the
Kubo formula in the absence of a magnetic field. Note that
this quantity is nonuniversal and vanishes as �→0. Never-
theless, we stress that it alone does not constitute the total
SHC.

VI. SUMMARY AND FINAL REMARKS

We have calculated the ballistic spin Hall conductivity �xy
z

for symmetric wells with two subbands in which the
intersubband-induced SO interaction is present. We follow a
linear-response approach due to Rashba which consistently
accounts for intrabranch and interbranch transitions in the
Kubo formula. We find that �xy

z is zero when the two sub-
bands are occupied �similar to the Rashba model� and non-
zero when only the lower subband is occupied. We have also
performed a numerical self-consistent calculation to deter-
mine the intersubband SO strength for realistic InSb wells
and have calculated the corresponding �xy

z . Even though the
calculated �xy

z shows interesting features such as discontinui-
ties at the subband edges �due to discontinuities in the DOS�,
a nonmonotonic behavior and a sign change as a function of
the Fermi energy �or areal density�, the magnitude of �xy

z is
much smaller than 1 in units of e /4	.

It is conceivable that other materials systems, e.g., metal-
lic surfaces and interfaces, can display intersubband-induced
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FIG. 3. �Color online� Interbranch �dashed line� and intrabranch
�long-dashed line� conductivity contributions and the total �solid
line� spin Hall conductivity �xy

z �in units of �0=e /4	� as functions
of the areal density n2D in the single InSb well shown in Fig. 2.
Note the discontinuities at EF=Eo and EF=Ee, which correspond to
n2D=10.3
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SO interaction, in addition to the usual Rashba. For instance,
metallic surfaces with unconventional spin topology29 where
deviations from the usual Rashba model have recently been
reported �and for which the SO couplings are much stronger
than in semiconductors� are a possibility. Perhaps in these
systems the SHC due to the intersubband SO coupling would
be sizable.

One caveat of our calculation is that we use a spin-current
definition which is a simple extension for two subbands of
the conventional �not uniquely defined30� symmetrized prod-
uct of the spin and velocity operators as in Rashba model.
Hence all the issues related to the reality of these currents
and whether or not they would lead to spin accumulation in
finite samples appear here as well. More work is certainly
needed to address these issues.31 Using nonequilibrium

Green’s functions on a lattice, we have performed some
simulations32 of the spin density in bilayer systems with in-
terlayer SO orbit coupling, whose Hamiltonian maps onto
our two-subband one. Our preliminary results show that the
spin density changes as compared to the single-layer case
�Rashba model�. Finally, we emphasize that the role of im-
purities, which we believe should not kill the effect discussed
here, remains an interesting problem for further investiga-
tions.
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